Precision Measurement of the Mean Curvature

Lloyd Knox

University of California, Davis

astro-ph/0503405

GEOMETRY OF THE UNIVERSE

Physical size of typical hot/cold spot can be calculated. How this projects into angular size depends on curvature.

OPEN

FLAT

CLOSED

"Weighing the Universe with the CMB" Jungman et al., Phys.Rev.Lett. **76**, 1007 (1996).

GEOMETRY OF THE UNIVERSE

Physical size of typical hot/cold spot can be calculated. How this projects into angular size depends on curvature and *comoving distance*.

OPEN

FLAT

CLOSED

So how has Ω_{tot} ' 1 been inferred from CMB data? Answer: $\partial D_A/\partial \Omega_{\text{tot}}$ ' 5 $\partial D_A/\partial \Omega_{\Lambda}$ \rightarrow If $\sigma(\Omega_{\Lambda}) = 0.5$ then $\sigma(\Omega_{\text{tot}}) = 0.1$

Outline

- Importance of Mean Curvature Measurement
- Dark Energy / Curvature Degeneracy
- A Straightforward Solution
- Standard Candles and Standard Rulers
- Conclusion

Why Measure Mean Curvature?

Robust Prediction of Inflation

$$<\!\!\rho\!\!>/\!\!\rho_c=1$$
 § $10^{\text{-}60}$ $<\!\!\rho\!\!>_{\text{H}}/\!\!\rho_c\!\!=\!\!1}$ § $10^{\text{-}5}$ (averaged over Hubble patch)

 Probe of Fluctuations on Super-horizon Scales

How Well Is it Known Already?

• If we assume the dark energy is a cosmological constant, the SDSS baryon oscillation detection combined with CMB data gives a very impressive constraint of $\Omega_{\text{tot}} = 1.01$ § 0.009

But we don't know that the dark energy is a cosmological constant. You may have noticed there's a minor effort underway to investigate the nature of the dark energy. If we allow w not equal to -1 then this constraint weakens considerably.

Dark Energy / Curvature Degeneracy

The comoving size of the sound horizon depends on matter density and baryon density, which can be inferred from CMB acoustic peak morphology, and thereby calibrated.

But D_A depends on both curvature and matter content \rightarrow degeneracy Ω_{Λ} - Ω_k degeneracy: Eisenstein et al. (1998), Efstathiou and Bond (1999)

Dark Energy / Curvature Degeneracy

$$ds^2 = dt^2 - a^2(t) [dr^2/(1-kr^2) + r^2(d\theta^2 + sin^2\theta d\phi^2)]$$

From line element, $D_A = r$, and comoving distance from origin to r is $1 = s_0^r dr'/(1-kr'^2)^{1/2}$

Solving for r to lowest order in k we have

$$D_A = r = 1 + k1^3/6$$

If we knew l and D_A we could solve for k. But we don't know l. Instead, we can calculate the comoving distance traveled by a photon that suffers a redshift, z:

$$l(z) = s_0^z dz'/H(z')$$
 where $H^2(z) = 8\pi G\rho(z)/3-k/a^2$

Precision Determination of Mean Curvature

Dark-energy polluted

Matter-dominated

M

Measure D_{OL} (with CMB) and D_{OM} (e.g., baryon oscillations)

Calculate l_{ML} (given ρ_m from CMB)*

In absence of curvature, D_{OL} - $(D_{OM}+l_{ML}) = 0$

More generally (for $|\Omega_k| \le 1$):

$$D_{OL}$$
- $(D_{OM}+l_{ML}) = \Omega_k H_0^2 (D_{OL}^3 - D_{OM}^3)/6$

←CMB last-scattering surface

*Note: l_{ML} is the comoving distance, equal to angular diameter distance D_{ML} if $\Omega_k = 0$.

Error on Curvature Given Error on D_{OM}

 $\Omega_k h^2 = (h/H_0)^2 (D_{OL} - (D_{OM} + l_{ML})/(D_{OL}^3 - D_{OM}^3)$

Horizontal lines: bias in method due to dark energy at $z > z_M$

Other lines: error in Ω_k h^2 due to CMB errors on Ω_b h^2 and Ω_m h^2 as well as D_{OM} measurement error.

In limit of perfect D_{OM} , errors in D_{OL} and l_{ML} (due to error in ρ_m) partially cancel.

10⁻⁵ is difficult!

Measuring D_{OM}

- Standard Candles
 - SNeIa, GRB?, ??
- Standard Rulers in Matter Power Spectrum
 - sound horizon at last-scattering:
 - $r_s \rightarrow measure D_A/r_s$
 - particle horizon at matter-radiation equality: $1/\rho_{\rm m,0}$ \rightarrow measure $D_{\rm A} \rho_{\rm m,o}$ (or $D_{\rm A} \omega_{\rm m}$).

$$(\omega_{\rm m} = \rho_{\rm m,0}/\rho_{\rm c} \, h^2)$$

Correlation Function of SDSS Luminous Red Galaxies

Curvature Error Given Error on D_{OM}/r_s

 $\Omega_{\rm k} h^2 = 6(h/H_0)^2 r_{\rm s}^{-2} (D_{\rm OL}/r_{\rm s} - (D_{\rm OM}/r_{\rm s} + l_{\rm ML}/r_{\rm s}))/((D_{\rm OL}/r_{\rm s})^3 - (D_{\rm OM}/r_{\rm s})^3)$

No significant error in D_{OL}/r_s (=1/ θ_s).

In limit of perfect D_{OM} , error is entirely from l_{ML} error.

Distance (and growth) reconstructed from LSST WL survey + Planck

With the parameters of the high-z Universe pinned down by Planck, only thing left to measure is g(z) and $D_A(z)$ (here called r(z)) in the dark energy-dominated era. They can both be reconstructed from tomographic cosmic shear data.

D.E. constraints come almost entirely from $D_A(z)$ constraints (Simpson & Bridle '04, KST05).

Dependence of Shear power on $\overline{D_A(z)}$ and g(z)

Curvature Error Given Error on Domwm

 $\Omega_{\rm k} h^2 = 6(h/H_0)^2 \omega_{\rm m}^2 (D_{\rm OL} \omega_{\rm m} - (D_{\rm OM} \omega_{\rm m} + 1_{\rm ML} \omega_{\rm m}))/((D_{\rm OL} \omega_{\rm m})^3 - (D_{\rm OM} \omega_{\rm m})^3)$

Limit of perfect $D_{OM} \omega_m$: Cancellation no longer as good between $D_{OL}\omega_m$ and $l_{ML}\omega_m$

We do significantly worse here than in pure distance measurement case or in baryon oscillation case.

Note on Robustness of $\Omega_k h^2$ from BAO

- CMB acoustic peak morphology affected by evolution of gravitational potentials \rightarrow constrains $\rho_{\rm m}/\rho_{\rm rad}$ and therefore ρ_m if we know radiation content.
- Independent of radiation content CMB robustly constrains $\rho_m^{1/2} r_s$.
- Since BAO constrain D_A/r_s and we know $\rho_m^{-1/2} r_s$ we actually learn $D_A \rho_m^{-1/2}$ (Eisenstein & White (2004))
- $\Omega_k h^2 / D_{OL} \omega_m^{1/2} (D_{OM} \omega_m^{1/2} + I_{ML} \omega_m^{1/2})$

Has no dependence on cosmological parameters!

What would a detection at 10⁻³ level possibly mean?

- Inflation did not happen (but then what did that leaves small curvature?)
- Inflation occurred and ended with bubble nucleation followed by ~ 60 e-folds of slow-roll. [Very fine-tuned!]
- Extra fluctuation power on super-horizon scales.

Another Way to Measure Mean Curvature

Bernstein (2005)

It's always true that

$$\mathbf{r}_{\mathrm{AC}} - (\mathbf{r}_{\mathrm{AB}} + \mathbf{r}_{\mathrm{BC}}) = 0$$

where A is the origin.

It's also true that $D_{AC} = r_{AC}$ and $D_{AB} = r_{AB}$,

but D_{BC} is *not* equal to r_{BC}

In fact,

$$D_{AC} - (D_{AB} + D_{BC}) / \Omega_k$$

WL is sensitive to all three distances. BAO can help.

Summary

- Zero mean curvature is a robust prediction of inflation worth rigorous checking.
- Uncertainty about dark energy limits our current knowledge of the mean curvature.
- Measurement of distances into the matterdominated era will greatly reduce the dark energy model-dependence of any curvature determination.

